
Creating and managing Controllers

Topics : Codeigniter
Written on February 29, 2024

1. Create a New Controller:

Navigate to the application/controllers directory in your CodeIgniter project.1.
Create a new PHP file for your controller. The file name should match the controller class2.
name.
Define your controller class, which should extend CI_Controller.3.
Implement methods within the controller class to handle different actions or pages in your4.
application.

Example:

<?php
defined('BASEPATH') OR exit('No direct script access allowed');

class Welcome extends CI_Controller {

 public function index() {
 // Controller method logic for the index page
 }

 public function about() {
 // Controller method logic for the about page
 }

 // Add more methods as needed
}
?>

2. Routing Requests to Controllers:

By default, CodeIgniter routes requests to controllers based on the URI segment after the base
URL.
For example, if your base URL is http://localhost/myapp/, a request to
http://localhost/myapp/welcome/about will route to the about() method in the
Welcome controller.
You can customize routing in the application/config/routes.php file if needed.

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/25/codeigniter.html
https://www.aryatechno.com/topics/

3. Loading Models and Views:

Within your controller methods, you can load models and views as needed to interact with the
database and render HTML output.
Use $this->load->model() to load models and $this->load->view() to load views.
Pass data to views using the second parameter of the load->view() method as an associative
array.

Example:

<?
public function index() {
 // Load model
 $this->load->model('welcome_model');
 // Call model method to retrieve data
 $data['message'] = $this->welcome_model->get_message();
 // Load view with data
 $this->load->view('welcome_message', $data);
}
?>

4. Managing Controllers:

Organize your controllers logically based on the functionality they provide.
Avoid creating overly large controllers by separating related functionality into different
controllers.
Reuse code by creating base controllers or using CodeIgniter's modular structure.
Ensure proper access control and security measures within your controllers to protect
sensitive data and prevent unauthorized access.

5. Testing:

Test your controllers by accessing the corresponding URLs in your browser or through API
clients like Postman.
Verify that the expected data is retrieved from models and passed to views correctly.
Debug any errors or issues encountered during testing and refine your controller logic as
needed.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by AryatechnoARYA
TECHNO

https://www.aryatechno.com/

