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React Hooks are functions that allow you to use state and other React features in functional
components. They were introduced in React version 16.8 to provide a more convenient way to work
with state and side effects in functional components, eliminating the need for class components in
many cases.

Here are some commonly used React Hooks:

1. useState:

useState allows you to add state to functional components. It returns an array with two elements:
the current state value and a function to update the state.

import React, { useState } from 'react';

function Example() {
const [count, setCount] = useState(0);

return (
<div>
<p>Count: {count}</p>
<button onClick={() => setCount(count + 1)}>Increment</button>
</div>
);
}

2. useEffect:

useEffect is used for side effects in functional components. It can replace lifecycle methods in
class components.

import React, { useState, useEffect } from 'react';

function Example() {
const [data, setData] = useState([]);

useEffect(() => {
// Fetch data or perform side effects here
// This function will run after every render
fetchData();
}, []); // The empty dependency array means this effect runs once after the initial render
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return (
<div>
{/* Render UI based on the data */}
</div>
);
}

3. useContext:

useContext allows you to subscribe to React context without introducing nesting.

import React, { useContext } from 'react';
import MyContext from './MyContext';

function Example() {
const contextValue = useContext(MyContext);

return (
<div>
{/* Use the context value */}
</div>
);
}

4. useReducer:

useReducer is a hook for managing more complex state logic. It is often preferable to useState
when the next state depends on the previous one.

import React, { useReducer } from 'react';

const initialState = { count: 0 };

function reducer(state, action) {
switch (action.type) {
case 'increment':
return { count: state.count + 1 };
default:
return state;
}
}

function Example() {
const [state, dispatch] = useReducer(reducer, initialState);

return (
<div>
<p>Count: {state.count}</p>
<button onClick={() => dispatch({ type: 'increment' })}>Increment</button>
</div>
);
}
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5. useCallback and useMemo:

useCallback and useMemo are used to optimize performance by memoizing functions and values.

import React, { useState, useCallback, useMemo } from 'react';

function Example() {
const [count, setCount] = useState(0);

const increment = useCallback(() => {
setCount(count + 1);
}, [count]); // Re-created only if count changes

const doubledValue = useMemo(() => count * 2, [count]); // Recalculated only if count changes

return (
<div>
<p>Count: {count}</p>
<p>Doubled: {doubledValue}</p>
<button onClick={increment}>Increment</button>
</div>
);
}
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