
Laravel - Middleware

Topics : Laravel
Written on December 21, 2023

In Laravel, middleware acts as a filter for HTTP requests entering your application. It can perform
various tasks such as authentication, logging, modifying request or response data, and more.
Middleware is executed in a sequential manner, and you can apply it globally to all routes, to
specific routes, or within a controller.

Here's a basic overview of how middleware works in Laravel:

Creating Middleware:

You can create a middleware using the artisan command:

php artisan make:middleware MyMiddleware

This will create a new middleware class in the app/Http/Middleware directory.

Middleware Structure:

A middleware class in Laravel typically contains a handle method. This method is called for each
incoming HTTP request. Here's a simple example:

namespace App\Http\Middleware;

use Closure;

class MyMiddleware
{
 public function handle($request, Closure $next)
 {
 // Perform actions before the request is handled by the application.

 $response = $next($request);

 // Perform actions after the request is handled by the application.

 return $response;
 }
}

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/20/laravel.html
https://www.aryatechno.com/topics/

Registering Middleware:

You can register middleware in the app/Http/Kernel.php file. The $middleware property
contains a list of middleware that will be run on every request:

 protected $middleware = [
 // ...
 \App\Http\Middleware\MyMiddleware::class,
];

You can also apply middleware to specific routes in the web.php or api.php route files:

Route::get('/example', function () {
 // Your route logic here
})->middleware('my_middleware');

Middleware Parameters:

You can pass parameters to middleware if needed. Modify the handle method to accept additional
parameters:

public function handle($request, Closure $next, $parameter)
{
 // Access the parameter here.
 // ...
}

And in the web.php or api.php file, you can pass parameters like this:

Route::get('/example', function () {
 // Your route logic here
})->middleware('my_middleware:param_value');

Global Middleware:

Global middleware is run on every HTTP request to your application. You can add them to the
$middleware property in the Kernel class.

Terminable Middleware:

If you need to perform actions after the response has been sent to the browser, you can implement
the TerminableMiddleware interface and add the terminate method to your middleware.

public function terminate($request, $response)
{
 // Perform actions after the response is sent.
}

ARYA
TECHNO

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

