
Java Inner Classes

Topics : JAVA
Written on April 10, 2023

In Java, an inner class is a class defined within another class. There are four types of inner classes in
Java:

Non-static nested class (also known as an inner class)1.
Static nested class2.
Local class3.
Anonymous class4.

Here is an example of a non-static nested class (inner class) in Java:

public class OuterClass {
 private int outerVar;

 public void outerMethod() {
 InnerClass innerObj = new InnerClass();
 innerObj.innerMethod();
 }

 public class InnerClass {
 private int innerVar;

 public void innerMethod() {
 outerVar = 10;
 innerVar = 20;
 System.out.println("Inner class method: outerVar = " + outerVar +
", innerVar = " + innerVar);
 }
 }

public class Main {
 public static void main(String[] args) {
 OuterClass outerObj = new OuterClass();
 outerObj.outerMethod(); // Output: "Inner class method: outerVar =
10, innerVar = 20"
 }
}

}

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/12/java.html
https://www.aryatechno.com/page/java/300/java-inner-classes.html

In this example, OuterClass has an inner class called InnerClass. The InnerClass can access
the members (fields and methods) of the OuterClass, including private members.

To create an instance of the InnerClass, we first need to create an instance of the OuterClass,
and then use that instance to create an instance of the InnerClass. We can then call the
innerMethod() of the InnerClass.

When we run the main() method, we create an instance of OuterClass and call its
outerMethod(). Within outerMethod(), we create an instance of InnerClass and call its
innerMethod(). The output shows that the InnerClass is able to access the outerVar variable
of the OuterClass.

Non-static nested classes are useful for organizing code and making it more readable. They can also
help to encapsulate implementation details and reduce the number of classes in a package.

In Java, a static nested class is a nested class that is declared with the static keyword. It is a
class that is a static member of its outer class, and can be accessed using the name of the outer
class. Here's an example of a static nested class in Java:

public class OuterClass {
 private static int outerVar = 10;

 public static class StaticNestedClass {
 private int innerVar;

 public void innerMethod() {
 innerVar = 20;
 System.out.println("Static nested class method: outerVar = " +
outerVar + ", innerVar = " + innerVar);
 }
 }
public class Main {
 public static void main(String[] args) {
 OuterClass.StaticNestedClass staticObj = new
OuterClass.StaticNestedClass();
 staticObj.innerMethod(); // Output: "Static nested class method:
outerVar = 10, innerVar = 20"
 }
}

}

When we run the main() method, we create an instance of StaticNestedClass using the syntax
OuterClass.StaticNestedClass. We can then call the innerMethod() of the
StaticNestedClass.

In Java, a local class is a class that is defined inside a method. Local classes have access to the
variables and parameters of the enclosing method, but can only be accessed from within that

ARYA
TECHNO

method. Here's an example of a local class in Java:

public class OuterClass {
 private int outerVar = 10;

 public void outerMethod() {
 int localVar = 20;

 class LocalClass {
 private int innerVar;

 public void innerMethod() {
 innerVar = 30;
 System.out.println("Local class method: outerVar = " +
outerVar + ", localVar = " + localVar + ", innerVar = " + innerVar);
 }
 }

 LocalClass localObj = new LocalClass();
 localObj.innerMethod(); // Output: "Local class method: outerVar =
10, localVar = 20, innerVar = 30"
 }
public class Main {
 public static void main(String[] args) {
 OuterClass outerObj = new OuterClass();
 outerObj.outerMethod(); // Output: "Local class method: outerVar =
10, localVar = 20, innerVar = 30"
 }
}

}

In this example, OuterClass has a method called outerMethod(), which contains a local class
called LocalClass. The LocalClass can access the variables outerVar and localVar of the
outerMethod(), as well as its own innerVar variable.

To create an instance of the LocalClass, we first need to call the outerMethod(), which will then
create an instance of the LocalClass. We can then call the innerMethod() of the LocalClass.

In Java, an anonymous class is a class that is defined and instantiated at the same time, without
giving it a name. Anonymous classes are often used for creating one-time use classes that implement
an interface or extend a class. Here's an example of an anonymous class in Java:

public class OuterClass {
 private int outerVar = 10;

ARYA
TECHNO

 public void outerMethod() {
 Interface innerObj = new Interface() {
 private int innerVar;

 @Override
 public void interfaceMethod() {
 innerVar = 20;
 System.out.println("Anonymous class method: outerVar = " +
outerVar + ", innerVar = " + innerVar);
 }
 };

 innerObj.interfaceMethod(); // Output: "Anonymous class method:
outerVar = 10, innerVar = 20"
 }
}

interface Interface {
 void interfaceMethod();
}

public class Main {
 public static void main(String[] args) {
 OuterClass outerObj = new OuterClass();
 outerObj.outerMethod(); // Output: "Anonymous class method: outerVar
= 10, innerVar = 20"
 }
}

Anonymous classes are useful when we need to create a small, one-time use class that implements
an interface or extends a class. They can help to reduce the amount of code we need to write, and
can make the code more concise and readable.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

